TECHNICAL MANUAL
VOLUME 1 OF 2
TROUBLESHOOTING
DIRECT SUPPORT AND GENERAL SUPPORT LEVEL
2 1/2 TON, 6X6, M44A1 AND M44A2 SERIES TRUCKS
(MULTIFUEL)

TRUCK, CARGO: M35A1
M35A2, M35A2C, M36A2; TRUCK,
TANK, FUEL: M49A1C, M49A2C, TRUCK, TANK,
WATER: M50A1, M50A2, M50A3; TRUCK, VAN,
SHOP: M109A2, M109A3; TRUCK, REPAIR SHOP:
M185A2, M185A3; TRUCK, TRACTOR: M275A1,
M275A2; TRUCK, DUMP: M342A2; TRUCK,
MAINTENANCE, PIPELINE CONSTRUCTION:
M756A2; TRUCK, MAINTENANCE,
EARTH BORING AND POLESETTING: M764

NOTE:
The style of this TM is experimental. It is being tried
by the Army only on
a limited basis

DEPARTMENTS OF THE ARMY AND THE AIR FORCE
MAY 1981
WARNING

EXHAUST GASES CAN BE DEADLY

Exposure to exhaust gases produces symptoms of headache, dizziness, loss of muscular control, apparent drowsiness, and coma. Permanent brain damage or death can result from severe exposure.

Carbon monoxide occurs in the exhaust fumes of fuel burning heaters and internal combustion engines, and becomes dangerously concentrated under conditions of inadequate ventilation. The following precautions must be observed to insure the safety of personnel whenever fuel burning heater(s) or engine of any vehicle is operated for maintenance purposes or tactical use.

Do not operate heater or engine of vehicle in an enclosed area unless it is adequately ventilated.

Do not idle engine for long periods without maintaining adequate ventilation in personnel compartments.

Do not drive any vehicle with inspection plates or cover plates removed unless necessary for maintenance purposes.

Be alert at all times during vehicle operation for exhaust odors and exposure symptoms. If either are present, immediately ventilate personnel compartments. If symptoms persist, remove affected personnel from vehicle and treat as follows: expose to fresh air; keep warm; do not permit physical exercise; if necessary, administer artificial respiration.

If exposed, seek prompt medical attention for possible delayed onset of acute lung congestion. Administer oxygen if available.

The best defense against exhaust gas poisoning is adequate ventilation.

WARNING

Serious or fatal injury to personnel may result if the following instructions are not complied with.

Diesel fuel is very flammable. Care must be used when choosing a place to work on fuel system. Keep truck about 50 feet away from an area where open flame, sparks, or smoking may cause a fire. Keep a fire extinguisher close by.

Fuel coming out of an injector nozzle under pressure can go through the skin. This can cause blood poisoning. Keep hands away from injector nozzle when doing test procedures.

Only properly trained personnel should perform test on 115 volt system. The voltage present in 115 volt system can cause severe or fatal electric shock.
Technical Manual

Volume 1 of 2

Troubleshooting

Direct Support and General Support Level

2 1/2-Ton, 6x6, M44A1 and M44A2 Series Trucks (Multifuel)

<table>
<thead>
<tr>
<th>Model</th>
<th>NSN without Winch</th>
<th>NSN with Winch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck, Cargo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M135A1</td>
<td>2320-00-542-5633</td>
<td>2320-00-542-5634</td>
</tr>
<tr>
<td>M35A2</td>
<td>2320-00-077-1616</td>
<td>2320-00-077-1617</td>
</tr>
<tr>
<td>M35A2C</td>
<td>2320-00-926-0873</td>
<td>2320-00-926-0875</td>
</tr>
<tr>
<td>M36A2</td>
<td>2320-00-077-1618</td>
<td>2320-00-077-1619</td>
</tr>
<tr>
<td>Truck, Tank, Fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M49A1C</td>
<td>2320-00-440-3349</td>
<td>2320-00-440-3346</td>
</tr>
<tr>
<td>M49A2C</td>
<td>2320-00-077-1631</td>
<td>2320-00-077-1632</td>
</tr>
<tr>
<td>Truck, Tank, Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M50A1</td>
<td>2320-00-440-8307</td>
<td>2320-00-440-8305</td>
</tr>
<tr>
<td>M50A2</td>
<td>2320-00-077-1633</td>
<td>2320-00-077-1634</td>
</tr>
<tr>
<td>M50A3</td>
<td>2320-00-937-4036</td>
<td>2320-00-937-5264</td>
</tr>
<tr>
<td>Truck, Van, Shop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M109A2</td>
<td>2320-00-440-8313</td>
<td>2320-00-440-8308</td>
</tr>
<tr>
<td>M109A3</td>
<td>2320-00-077-1636</td>
<td>2320-00-077-1637</td>
</tr>
<tr>
<td>Truck, Repair Shop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M185A2</td>
<td>4940-00-987-8799</td>
<td>4940-00-987-8800</td>
</tr>
<tr>
<td>M185A3</td>
<td>4940-00-077-1638</td>
<td>4940-00-077-1639</td>
</tr>
<tr>
<td>Truck, Tractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M275A1</td>
<td>2320-00-446-2479</td>
<td>2320-00-077-1641</td>
</tr>
<tr>
<td>M275A2</td>
<td>2320-00-077-1640</td>
<td>2320-00-077-1644</td>
</tr>
<tr>
<td>Truck, Dump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M342A2</td>
<td>2320-00-077-1643</td>
<td>2320-00-077-1644</td>
</tr>
<tr>
<td>Truck, Maintenance, Pipeline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>M756A2</td>
<td>2320-00-904-3277</td>
</tr>
<tr>
<td>Truck, Maintenance, Earth Boring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Polesetter</td>
<td>M764</td>
<td>2320-00-937-5980</td>
</tr>
</tbody>
</table>

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedure, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in the back of this manual direct to: Commander, US Army Tank-Automotive Command, ATTN: DRSTA-MB, Warren, Michigan 48090. A reply will be furnished to you.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>GENERAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>1-1</td>
</tr>
<tr>
<td>Organization</td>
<td>1-2</td>
</tr>
<tr>
<td>Troubleshooting Approach</td>
<td>1-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>TROUBLESHOOTING APPROACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Approach</td>
<td>2-1</td>
</tr>
<tr>
<td>Troubleshooting Index</td>
<td>2-2</td>
</tr>
<tr>
<td>Test Equipment Procedures Index</td>
<td>2-3</td>
</tr>
<tr>
<td>Troubleshooting Roadmaps</td>
<td>2-4</td>
</tr>
<tr>
<td>Fault Symptom Index</td>
<td>2-5</td>
</tr>
<tr>
<td>Sample Troubleshooting Procedure</td>
<td>2-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>TROUBLESHOOTING INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>3-1</td>
</tr>
<tr>
<td>Index</td>
<td>3-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>TEST EQUIPMENT PROCEDURE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>4-1</td>
</tr>
<tr>
<td>Index</td>
<td>4-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5</th>
<th>TROUBLESHOOTING ROADMAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>5-1</td>
</tr>
<tr>
<td>Roadmaps</td>
<td>5-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 6</th>
<th>FAULT SYMPTOM INDEXES</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>6-1</td>
</tr>
<tr>
<td>Indexes</td>
<td>6-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 7</th>
<th>SAMPLE TROUBLESHOOTING PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>7-1</td>
</tr>
<tr>
<td>Sample Detailed Procedure</td>
<td>7-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 8</th>
<th>ENGINE SYSTEM TROUBLESHOOTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Items Covered</td>
<td>8-1</td>
</tr>
<tr>
<td>Equipment Items Not Covered</td>
<td>8-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 9</th>
<th>ENGINE SYSTEM TEST PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>9-1</td>
</tr>
<tr>
<td>Test Set-up</td>
<td>9-2</td>
</tr>
<tr>
<td>Test Procedure</td>
<td>9-3</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>FUEL SYSTEM TROUBLESHOOTING</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>10-1</td>
<td></td>
</tr>
<tr>
<td>10-2</td>
<td></td>
</tr>
<tr>
<td>11-1</td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td></td>
</tr>
<tr>
<td>12-2</td>
<td></td>
</tr>
<tr>
<td>12-3</td>
<td></td>
</tr>
<tr>
<td>13-1</td>
<td></td>
</tr>
<tr>
<td>13-2</td>
<td></td>
</tr>
<tr>
<td>14-1</td>
<td></td>
</tr>
<tr>
<td>15-1</td>
<td></td>
</tr>
<tr>
<td>15-2</td>
<td></td>
</tr>
<tr>
<td>16-1</td>
<td></td>
</tr>
<tr>
<td>16-2</td>
<td></td>
</tr>
<tr>
<td>17-1</td>
<td></td>
</tr>
<tr>
<td>17-2</td>
<td></td>
</tr>
<tr>
<td>18-1</td>
<td></td>
</tr>
<tr>
<td>18-2</td>
<td></td>
</tr>
<tr>
<td>19-1</td>
<td></td>
</tr>
<tr>
<td>19-2</td>
<td></td>
</tr>
<tr>
<td>20-1</td>
<td></td>
</tr>
<tr>
<td>20-2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS-CONT

VOLUME 2 OF 2

CHAPTER 1. GENERAL MAINTENANCE INFORMATION
- **Scope** ... 2-1
- **Section II. Engine Assembly** 2-1
- **Section III. Crankcase, Block, and Cylinder Head** 2-42
- **Section IV. Crankshaft** 2-106
- **Section V. Flywheel** 2-123
- **Section VI. Pistons and Connecting Rods** 2-132
- **Section VII. Valves, Camshaft, and Timing System** 2-132
- **Section VIII. Engine Lubricating System and Manifold** .. 2-169

CHAPTER 2. ENGINE SYSTEM GROUP MAINTENANCE
- **Section I. Scope** 2-1
- **Section II. Engine Assembly** 2-1
- **Section III. Crankcase, Block, and Cylinder Head** 2-42
- **Section IV. Crankshaft** 2-106
- **Section V. Flywheel** 2-123
- **Section VI. Pistons and Connecting Rods** 2-132
- **Section VII. Valves, Camshaft, and Timing System** 2-132
- **Section VIII. Engine Lubricating System and Manifold** .. 2-169

CHAPTER 3. CLUTCH SYSTEM GROUP MAINTENANCE
- **Section I. Scope** 3-1
- **Section II. Clutch Assembly** 3-1
- **Section III. Clutch Release Mechanism** 3-5

CHAPTER 4. FUEL SYSTEM GROUP MAINTENANCE
- **Section I. Scope** 4-1
- **Section II. Fuel Injector** 4-1
- **Section III. Turbocharger** 4-6
- **Section IV. Fuel Tanks** 4-6

CHAPTER 5. EXHAUST SYSTEM GROUP MAINTENANCE
- **Section I. Scope** 5-1
- **Section II. Exhaust Pipes and Mufflers** 5-1

CHAPTER 6. COOLING SYSTEM GROUP MAINTENANCE
- **Section I. Scope** 6-1
- **Section II. Radiator and Shrouds** 6-1

CHAPTER 7. ELECTRICAL SYSTEM GROUP MAINTENANCE
- **Section I. Scope** 7-1
- **Section II. Charging System** 7-1
- **Section III. Battery System** 7-1
- **Section IV. Chassis Wiring Harnesses** 7-2

CHAPTER 8. TRANSMISSION SYSTEM GROUP MAINTENANCE
- **Section I. Scope** 8-1
- **Section II. Transmission Assembly** 8-1

CHAPTER 9. TRANSMISSION TRANSFER SYSTEM GROUP MAINTENANCE
- **Section I. Scope** 9-1
- **Section II. Transmission Transfer Assembly** 9-1

CHAPTER 10. FRONT AXLE GROUP MAINTENANCE
- **Section I. Scope** 10-1
- **Section II. Front Axle Assembly** 10-1
- **Section III. Differential Carrier Assembly** 10-41
- **Section IV. Steering Mechanism** 10-107
TABLE OF CONTENTS-CONT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>GROUP MAINTENANCE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>REAR AXLE GROUP</td>
<td>11-1</td>
</tr>
<tr>
<td></td>
<td>MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>Section I.</td>
<td>Scope</td>
<td>11-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Rear Axle Assembly</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>BRAKE SYSTEM</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>GROUP MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>Section I.</td>
<td>Scope</td>
<td>12-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Handbrake and Service Brake Assemblies</td>
<td></td>
</tr>
<tr>
<td>Section III.</td>
<td>Hydraulic Brake System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section IV.</td>
<td>12-7</td>
</tr>
<tr>
<td>Section V.</td>
<td>Trailer Brake Connections and Controls</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>WHEEL SYSTEM</td>
<td>12-59</td>
</tr>
<tr>
<td></td>
<td>GROUP MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>Section I.</td>
<td>Scope</td>
<td>13-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Wheel Assembly</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>STEERING SYSTEM</td>
<td>13-1</td>
</tr>
<tr>
<td></td>
<td>GROUP MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>Section I.</td>
<td>Scope</td>
<td>13-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Mechanical Steering Gear Assembly</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>FRAME AND TOWING</td>
<td>14-1</td>
</tr>
<tr>
<td></td>
<td>ATTACHMENTS GROUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>Section I.</td>
<td>Scope</td>
<td>14-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Frame Assembly</td>
<td>15-1</td>
</tr>
<tr>
<td></td>
<td>Section III.</td>
<td>15-1</td>
</tr>
<tr>
<td></td>
<td>Fifth Wheel Assembly</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>SPRINGS GROUP</td>
<td>15-57</td>
</tr>
<tr>
<td></td>
<td>MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>Section I.</td>
<td>Scope</td>
<td>16-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Springs</td>
<td>16-1</td>
</tr>
</tbody>
</table>

Part 2 of 3

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>GROUP MAINTENANCE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>BODY, CAB, HOOD,</td>
<td>17-1</td>
</tr>
<tr>
<td></td>
<td>AND HULL GROUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>Section I.</td>
<td>Scope</td>
<td>17-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Hood and Cab Components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section III.</td>
<td>17-79</td>
</tr>
<tr>
<td></td>
<td>Fenders, Running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boards, and Wind-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shield Assembly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section IV.</td>
<td>17-122</td>
</tr>
<tr>
<td></td>
<td>Seats</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section V.</td>
<td>17-147</td>
</tr>
<tr>
<td></td>
<td>Cargo Body Compo-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section VI.</td>
<td>17-165</td>
</tr>
<tr>
<td></td>
<td>Tank Body Compo-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section VII.</td>
<td>17-376</td>
</tr>
<tr>
<td></td>
<td>Special Purpose Body Components</td>
<td></td>
</tr>
</tbody>
</table>

Part 3 of 3

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>GROUP MAINTENANCE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>WINCH, HOIST, AND</td>
<td>18-1</td>
</tr>
<tr>
<td></td>
<td>POWER TAKEOFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASSEMBLIES GROUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>Section I.</td>
<td>Scope</td>
<td>18-1</td>
</tr>
<tr>
<td>Section II.</td>
<td>Winch and Hoist Assemblies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section III.</td>
<td>18-274</td>
</tr>
<tr>
<td></td>
<td>Power Takeoff Assembly</td>
<td></td>
</tr>
</tbody>
</table>

Part 3 of 3
TABLE OF CONTENTS-CONT

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Topic</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>BUMPER AND GUARDS GROUP MAINTENANCE</td>
<td></td>
<td>19-1</td>
</tr>
<tr>
<td></td>
<td>Section I. Scope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section II. Bumper, Brackets, Guards, and Protective Devices</td>
<td></td>
<td>19-1</td>
</tr>
<tr>
<td>20</td>
<td>BODY ACCESSORY ITEMS GROUP MAINTENANCE</td>
<td></td>
<td>20-1</td>
</tr>
<tr>
<td></td>
<td>Section I. Scope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section II. Canvas and Rubber Items</td>
<td></td>
<td>20-1</td>
</tr>
<tr>
<td>21</td>
<td>MAINTENANCE OF MATERIAL USED IN CONJUNCTION WITH MAJOR ITEMS</td>
<td></td>
<td>21-1</td>
</tr>
<tr>
<td></td>
<td>Section I. Scope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section II. Winterization Kits</td>
<td></td>
<td>21-1</td>
</tr>
<tr>
<td></td>
<td>Section III. Deep Water Fording Kit</td>
<td></td>
<td>21-140</td>
</tr>
<tr>
<td></td>
<td>Section IV. Special Purpose Kits</td>
<td></td>
<td>21-199</td>
</tr>
<tr>
<td>A</td>
<td>REFERENCES</td>
<td></td>
<td>A-1</td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
<td></td>
<td>Index 1</td>
</tr>
</tbody>
</table>
CHAPTER 1
GENERAL INFORMATION

1-1. SCOPE. This volume shows you how to do troubleshooting at the direct and
general support levels of maintenance. The amount of troubleshooting you can do is
based on what the Maintenance Allocation Chart says you can fix. Because of this,
the only trouble symptoms you will find here are those that could be caused by
faulty things you can fix.

1-2. ORGANIZATION. This volume has the information you will need to troubleshoot
the truck. Chapter 2 tells you how to use the information in the other chapters of
this volume to find what is wrong with the truck, and what you must do to fix it.
Chapter 7 has a procedure that takes you step-by-step through a sample trouble-
shooting procedure and shows you how to use the information to find the trouble and
fix it.

1-3. TROUBLESHOOTING APPROACH. In order to find out what is causing the
problem in the truck, you must use a good approach. A good approach just means a
way of doing troubleshooting so you can find the problem and not get confused or lost.
The following chapter describes how you can use the materials in this volume to
troubleshoot with a good approach.
CHAPTER 2
TROUBLESHOOTING APPROACH

2-1. GENERAL APPROACH. This chapter gives you instructions on how to use the troubleshooting material to help you find and fix the trouble. In every system of the truck there can be faults or problems which will cause certain symptoms. Symptoms can be such things as unusual noise, vibration, or even complete failure of a system. This volume gives information for each system on which you can do troubleshooting to find faults and fix them. Before you troubleshoot a system, you should look at the troubleshooting indexes which will lead you to the information you need to help make your troubleshooting faster and easier. If you follow the instructions the right way, you will find those troubles you can fix. But, if you fix something and the trouble is still there, it means there is more than one trouble. If this happens, start all over again to find the other trouble.

2-2. TROUBLESHOOTING INDEX. The troubleshooting index, and instructions how to use it are in chapter 3. Go to this index first because it tells you where to find troubleshooting roadmaps, fault symptom indexes, summary troubleshooting charts and support diagrams for each system.

2-3. TEST EQUIPMENT PROCEDURES INDEX. The test equipment procedures index, and instructions on how to use it are in chapter 4. This index tells you where to find electrical and mechanical tests which you can use to do your troubleshooting. It also tells you what equipment you will need to do the tests. If you have a STE/ICE (Simplified Test Equipment/Internal Combustion Engine) Set (NSN 4910-00-124-2554), you may use it, where applicable, to do your troubleshooting. Refer to TM 9-4910-571-12&P.

2-4. TROUBLESHOOTING ROADMAPS. Troubleshooting roadmaps for each system are in chapter 5. If the system is made up of subsystems, these subsystems are also on the roadmap. Under the subsystem is a list of things which are the most likely causes of a fault symptom in that subsystem. If you have enough skill, you can troubleshoot these things on the truck without using the detailed troubleshooting procedures. So if you know enough about the truck to work on your own, use the roadmap for the system with the problem before you check the fault symptom index.

2-5. FAULT SYMPTOM INDEX. Fault symptom indexes and instructions on how to use them are in chapter 6. For each system of the truck, there is an index which gives you a list of the fault symptoms for that system. The index also tells you where to find the detailed troubleshooting procedures and what resources (tools/people) you need to do each procedure.

2-6. SAMPLE TROUBLESHOOTING PROCEDURE. A sample troubleshooting procedure is in chapter 7. This sample procedure will help you see the way detailed troubleshooting procedures are to be used.
CHAPTER 3
TROUBLESHOOTING INDEX

3-1. GENERAL. This chapter has a troubleshooting index which covers every system of the truck on which you can do troubleshooting. The index tells you where to find all the other information you need to do your troubleshooting procedures.

3-2. INDEX. The troubleshooting index. (figure 3-1) is divided into five columns that list systems, troubleshooting roadmaps, fault symptoms, summary troubleshooting procedures, and system support diagrams. The following breakdown tells you what is in each column.

 a. System Column. This column gives a list of systems on the truck for which troubleshooting can be done at the direct support maintenance level.

 b. Troubleshooting Roadmaps Column. This column tells you where to find the troubleshooting roadmap for each listed system. These roadmaps are given in chapter 5.

 c. Fault Symptom Index Column. This column tells you where to find the troubleshooting fault symptom index for each listed system. Fault symptom indexes are given in chapter 6.

 d. Summary troubleshooting Procedures Column. This column tells you where to find the summary troubleshooting procedure for each listed system. Some systems do not have summary troubleshooting procedures, so the column will be left blank for those systems.

 e. System Support Diagrams Column. This column tells you where to find support diagrams for each listed system. Some systems do not have support diagrams, so the column will be left blank for those systems.
<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>TROUBLESHOOTING ROADMAPS</th>
<th>FAULT SYMPTOM INDEXES</th>
<th>SUMMARY TROUBLESHOOTING PROCEDURES</th>
<th>SYSTEM SUPPORT DIAGRAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ENGINE</td>
<td>Figure 5-1</td>
<td>Table 6-1</td>
<td></td>
<td>Figure 9-1</td>
</tr>
<tr>
<td>2 FUEL</td>
<td>Figure 5-2</td>
<td>Table 6-2</td>
<td></td>
<td>Figure 11-1</td>
</tr>
<tr>
<td>3 ELECTRICAL</td>
<td>Figure 5-3</td>
<td>Table 6-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 TRANSMISSION</td>
<td>Figure 5-4</td>
<td>Table 6-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 EARTH BORING MACHINE</td>
<td>Figure 5-5</td>
<td>Table 6-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 FRONT WINCH</td>
<td>Figure 5-6</td>
<td>Table 6-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 DUMP</td>
<td>Figure 5-7</td>
<td>Table 6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 M764 REAR WINCH</td>
<td>Figure 5-8</td>
<td>Table 6-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 M756A2 REAR WINCH</td>
<td>Figure 5-9</td>
<td>Table 6-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-1. Troubleshooting Index
CHAPTER 4
TEST EQUIPMENT PROCEDURES INDEX

4-1. GENERAL. This chapter has a test equipment procedures index which tells you where to find the tests you need to do your troubleshooting.

4-2. INDEX. The test equipment procedures index is divided into three columns that list test equipment, tests, and figure numbers. The following breakdown tells you what is in each column.

a. Test Equipment Column. This column tells you what kind of equipment you need to do your troubleshooting tests.

b. Tests Column. This column tells you what tests are given in this manual. Next to each piece of test equipment are listed the tests that you can do with that equipment. This column also gives troubleshooting tests which can be done without using test equipment.

c. Figure Column. This column tells you where you can find the tests in this manual.
<table>
<thead>
<tr>
<th>TEST EQUIPMENT</th>
<th>TESTS</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPRESSION TESTER GAGE</td>
<td>Engine Cylinder Compression</td>
<td>9-1</td>
</tr>
<tr>
<td>Fuel Injector Nozzle</td>
<td>12-1</td>
<td></td>
</tr>
<tr>
<td>MULTIMETER TESTS</td>
<td>Refer to TM 9-2320-209-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-1. Test Equipment Procedures Index
CHAPTER 5
TROUBLESHOOTING ROADMAPS

5-1. GENERAL. This chapter gives troubleshooting roadmaps for every system of
the truck for which you have detailed troubleshooting procedures. Figures 5-1
through 5-9 cover all the roadmaps for the detailed procedures.

5-2. ROADMAPS. Each roadmap gives a list of things which are most likely to cause
a fault symptom in a system or sub-system. At least one of the items listed will be
found to be bad when you do the detailed troubleshooting procedures for that system.
Figure 5-1. Troubleshooting Roadmap, Engine System

- Oil pressure regulator valve
- Pressure oil pump pickup tube screen
- Pressure oil pump pickup tube mounting bolts
- Pressure oil pump outlet tube mounting bolts
- Oil pump
- Valve springs
- Pushrods
- Tappets
- Engine valves

Figure 5-2. Troubleshooting Roadmap, Fuel System

- Fuel injector nozzles
- Fuel injection pump
- Turbocharger
Figure 5-3. Troubleshooting Roadmap, Electrical System
TRANSMISSION SYSTEM

- Shifter shaft cover
- Transmission

Figure 5-4. Troubleshooting Roadmap, Transmission System

EARTH BORING MACHINE SYSTEM

- Power divider
- Main drive idler gear housing assembly
- Verticle drive chain sprockets
- Drive clutch
- Horizontal drive chain sprockets

Figure 5-5. Troubleshooting Roadmap, Earth Boring Machine System

FRONT WINCH SYSTEM

- Power takeoff
- Winch gear case
- Winch drum assembly

Figure 5-6. Troubleshooting Roadmap, Front Winch System
M342A2 DUMP SYSTEM

- Crosshead roller arm assemblies
- Control valve spool trunnion
- Hydraulic pump
- Hydraulic cylinder assembly
- Hydraulic hoist control valve

Figure 5-7. Troubleshooting Roadmap, M342A2 Dump System

M764 REAR WINCH SYSTEM

- Winch
- Power takeoff
- Automatic brake adjustment
- Automatic brake linings

Figure 5-8. Troubleshooting Roadmap, M764 Rear Winch System

M756A2 REAR WINCH SYSTEM

- Winch
- Power takeoff
- Automatic brake adjustment
- Automatic brake linings

Figure 5-9. Troubleshooting Roadmap, M756A2 Rear Winch System
CHAPTER 6

FAULT SYMPTOM INDEXES

6-1. GENERAL. This chapter gives troubleshooting fault symptom indexes for every system of the truck for which you have detailed troubleshooting procedures. These indexes are in table form (tables 6-1 through 6-9) which gives you a quick way to check what material you have to use to do your troubleshooting.

6-2. INDEXES. Each index is divided into columns which give you information you need to help you do troubleshooting procedures. The following breakdown tells you what is in each column.

 a. **Subsystem Column.** If the main system is divided into subsystems, the subsystems will be listed in this column.

 b. **Symptom Column.** This column lists the symptoms, or problems for which detailed troubleshooting procedures are given.

 c. **Summary Column.** This column tells you where to find the summary troubleshooting procedures for each symptom.

 d. **Detailed Column.** This column tells you where to find the detailed troubleshooting procedure for each symptom.

 e. **Persons Column.** This column tells you how many people are needed to do the troubleshooting procedure.

 f. **Special Tools Column.** Any tools needed to do the troubleshooting procedure which are not included in your common tool kit are listed in this column.

 g. **Standard Tools Column.** A dot in this column means that tools found in your common tool kit are needed to do the troubleshooting procedure.

 h. **Materials Column.** This column tells you what materials are needed to do the troubleshooting procedure. These materials and how they will be issued will be decided by your maintenance officer.

 i. **Time Column.** This column tells you how much time you will need to do the detailed troubleshooting procedure. The time will be decided by your maintenance officer.
TABLE 6-1. ENGINE SYSTEM

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>SYMPTOM</th>
<th>SUMMARY</th>
<th>DETAILED</th>
<th>PERSONS</th>
<th>SPECIAL TOOLS</th>
<th>STANDARD TOOLS</th>
<th>MATERIALS</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Low oil pressure</td>
<td></td>
<td>Figure 8-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Engine runs rough</td>
<td></td>
<td>Figure 8-2</td>
<td>1</td>
<td>Checking cylinder compression gage assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Hard starting</td>
<td></td>
<td>Figure 8-3</td>
<td>1</td>
<td>Checking cylinder compression gage assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6-2. FUEL SYSTEM

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>SYMPTOM</th>
<th>SUMMARY</th>
<th>DETAILED</th>
<th>PERSONS</th>
<th>SPECIAL TOOLS</th>
<th>STANDARD TOOLS</th>
<th>MATERIALS</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Engine runs rough and lacks power</td>
<td></td>
<td>Figure 10-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Engine cranks but does not start</td>
<td></td>
<td>Figure 10-2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Poor fuel mileage</td>
<td></td>
<td>Figure 10-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TM 9-2320-209-34-1

TA 120727
<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>SYMPTOM</th>
<th>SUMMARY</th>
<th>DETAILED</th>
<th>TS PROCEDURE</th>
<th>RESOURCES REQ'D</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER PLANT HEATER KIT</td>
<td>1. Power plant heater overheats and continues burning</td>
<td></td>
<td>Figure 13-1</td>
<td>1</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>2. Power plant heater does not give enough heat</td>
<td></td>
<td>Figure 13-2</td>
<td>1</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>3. Power plant heater does not start</td>
<td></td>
<td>Figure 13-3</td>
<td>1</td>
<td>●</td>
</tr>
<tr>
<td>FUEL BURNING HEATER KIT</td>
<td>4. Fuel burning heater overheats and continues burning</td>
<td></td>
<td>Figure 13-4</td>
<td>1</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>5. Fuel burning heater does not give enough heat</td>
<td></td>
<td>Figure 13-5</td>
<td>1</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>6. Fuel burning heater does not start</td>
<td></td>
<td>Figure 13-6</td>
<td>1</td>
<td>●</td>
</tr>
<tr>
<td>VAN BÖDY</td>
<td>7. No van lights or equipment work</td>
<td></td>
<td>Figure 13-7</td>
<td>1</td>
<td>●</td>
</tr>
</tbody>
</table>
TABLE 6-4. TRANSMISSION SYSTEM

<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>SYMPTOM</th>
<th>SUMMARY</th>
<th>DETAILED</th>
<th>PERSONS</th>
<th>SPECIAL TOOLS</th>
<th>STANDARD TOOLS</th>
<th>MATERIALS</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Transmission is hard to shift or pops out of gear</td>
<td></td>
<td>Figure 15-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6-5. EARTH BORING MACHINE SYSTEM

<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>SYMPTOM</th>
<th>SUMMARY</th>
<th>DETAILED</th>
<th>PERSONS</th>
<th>SPECIAL TOOLS</th>
<th>STANDARD TOOLS</th>
<th>MATERIALS</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Boring machine propeller shaft does not turn</td>
<td></td>
<td>Figure 16-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Boring machine does not move up or down</td>
<td></td>
<td>Figure 16-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Boring machine does not move left or right</td>
<td></td>
<td>Figure 16-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6-6. Front Winch System

<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>SYMPTOM</th>
<th>TS PROCEDURE</th>
<th>RESOURCES REQ'D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Winch does not pull load</td>
<td>Figure 17-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6-7. M342A2 Dump System

<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>SYMPTOM</th>
<th>TS PROCEDURE</th>
<th>RESOURCES REQ'D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Dump body does not rise</td>
<td>Figure 18-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2. Dump body rises slowly</td>
<td>Figure 18-2</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 6-8. M764 Rear Winch System

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Symptom</th>
<th>TS Procedure</th>
<th>Resources Req'd</th>
<th>Test Equipment</th>
<th>Special Tools</th>
<th>Standard Tools</th>
<th>Materials</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Winch does not pull load</td>
<td>Figure 19-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Winch does not hold load</td>
<td>Figure 19-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Winch drum spins too fast when unwinding cable</td>
<td>Figure 19-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6-9. M756A2 Rear Winch System

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Symptom</th>
<th>TS Procedure</th>
<th>Resources Req'd</th>
<th>Test Equipment</th>
<th>Special Tools</th>
<th>Standard Tools</th>
<th>Materials</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Winch does not pull load</td>
<td>Figure 20-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Winch does not hold load</td>
<td>Figure 20-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Winch drum spins too fast when unwinding cable</td>
<td>Figure 20-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 7

SAMPLE TROUBLESHOOTING PROCEDURE

7-1. GENERAL. This chapter gives a sample troubleshooting procedure. The purpose of the sample procedure is to help you see how detailed troubleshooting procedures, test equipment procedures, and summary troubleshooting procedures are used to find faults in a system.

7.2. SAMPLE DETAILED PROCEDURE. (See figure 7-1.) The sample detailed procedure given is the fuel system troubleshooting procedure for the symptom, STARTER MOTOR WILL NOT CRANK ENGINE. This symptom is one you will have when you try to start your truck and certain parts on the truck are not working correctly. In each numbered box, instructions are given which tell you what to do, and how to do it. A large dot is placed next to the “what-to-do” instructions, and small dots next to the “how-to-do-it” instructions.

a. Box number ① gives general instructions on getting the truck ready before you start to troubleshoot.

b. Box number ② gives fault isolation test instructions. In this case you are told to check the starting system circuit for loose, burned, or broken leads and connections. These tests or checks, are often referred to in detailed troubleshooting procedures to help you find the problem and fix it. After you do the tests or checks you read the question at the bottom of box number ②. If the starter system is not okay, the answer to the question is NO so you go to the next box.

c. Box number ③ gives you a corrective action. In this case the fault is burned or broken leads or connectors. The corrective action is what you do to fix the fault, which is to replace any burned or broken leads or connectors. If the engine still doesn’t start after you do this, it could mean that there are other faults in the system. When this happens, go back to the beginning of the procedure and do each step again until you find the other faults.

d. Sometimes the corrective actions given for a fault will tell you what to do to fix the fault, but will not give you detailed instructions on how to fix it. Instead, you will be told to refer to another volume in this manual for these instructions. Box number ④ is an example of this.
Symptom

STARTER MOTOR WILL NOT CRANK ENGINE

NOTE

Two soldiers are needed for some starter system checks, and are noted as Soldier A and Soldier B.

When measuring voltage +24 volts DC, means a range of +23 to +26 volts DC.

1. Park truck
 - Refer to TM 9-2320-242-10

2. Check starting system circuit for loose, burned or broken leads and connectors
 - Refer to TM 9-2320-209-20

OK?

3. NO
 - Replace any burned or broken leads or connectors
 - Refer to Vol 3, chapter 7, para 7-10 and 7-11

4. YES
 - Replace starter button
 - Refer to Vol 3, chapter 7, para 7-9

Figure 7-1. Sample Troubleshooting Procedure

7-2
8-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the engine system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

8-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
Symptom 1

LOW OIL PRESSURE

1. Park truck
 - Refer to TM 9-2320-209-10

2. Check for sticking oil pressure regulator valve
 - Take off oil pressure regulator valve housing. Refer to Vol 2, chapter 2, para 2-19
 - Take out pressure regulator valve plug. Refer to TM 9-2815-210-34
 - Feel if plunger slides freely in bore. Refer to TM 9-2815-210-34

Does plunger slide freely?

3. YES
 - Repair scratches or burrs in oil pressure regulator valve housing
 - Refer to TM 9-2815-210-34
 - Replace bad plunger
 - Refer to TM 9-2815-210-34

4. NO
 - Put back oil pressure regulator valve housing
 - Refer to Vol 2, chapter 2, para 2-19

GO

Figure 8-1 (Sheet 1 of 4)
5. Take off engine oil pan
 - Refer to Vol 2, chapter 2, para 2-17
 - See if pressure oil pump pickup tube screen is clogged

 Is screen OK?

5. Take off engine oil pan
 - Refer to Vol 2, chapter 2, para 2-17
 - See if pressure oil pump pickup tube screen is clogged

 Is screen OK?

6. Clean pressure oil pump pickup tube screen
 - Refer to Vol 2, chapter 1, para 1-3

7. Check for loose pressure oil pump pickup tube mounting bolts
 - Using wrench, feel for loose bolts

 Are bolts tight?

7. Check for loose pressure oil pump pickup tube mounting bolts
 - Using wrench, feel for loose bolts

 Are bolts tight?

8. Tighten loose mounting bolts

8. Tighten loose mounting bolts
9. Check for loose pressure oil pump outlet tube mounting bolts at oil pump and engine block

Are mounting bolts tight?

- YES
- NO

10. Tighten loose mounting bolts

11. Replace oil pump
 - Refer to Vol 2, chapter 2, para 2-17
 - Fill crankcase with correct amount of engine oil
 - Refer to LO 9-2320-209-12/1
 - Start engine
 - Refer to TM 9-2320-209-10

Is oil pressure still low?

GO
Figure 8-1 (Sheet 4 of 4)
Symptom

2 ENGINE RUNS ROUGH

1
- Park truck
 - Refer to TM 9-2320-209-10

2
- Take off engine cylinder head rocker covers
 - Refer to TM 9-2815-210-34

3
- Check valve springs and pushrods
 - Look for broken valve springs
 - Look for bent pushrods

Are valve springs and pushrods OK?

4
- Replace broken valve springs
 - Refer to TM 9-2815-210-34
- Replace bent push rods
 - Refer to TM 9-2815-210-34

GO

Figure 8-2 (Sheet 1 of 2)
Figure 8-2 (Sheet 2 of 2)
Symptom
3 HARD STARTING

1. Check engine valve lash
 - Refer to Vol 2, Chapter 2, para 2-14

 Is valve lash OK?

2. Adjust valves
 - Refer to Vol 2, Chapter 2, para 2-14

 YES
 NO

3. Check engine for leaking valves
 - Refer to test equipment procedures index for engine cylinder compression test

 Are engine valves OK?

4. Repair cylinder head
 - Refer to TM 9-2815-210-34

 NO

5. Repair engine
 - Refer to TM 9-2815-210-34

 YES

Figure 8-3
CHAPTER 9

ENGINE SYSTEM TEST PROCEDURES

9-1. GENERAL. This chapter gives test procedures for the tests given in chapter 8, for the engine system.

9-2. TEST SET-UP. Instructions for setup of test equipment and parts to be tested are given before the test procedures. Illustrations are used, when needed, to show you how to hook up the test equipment to the part to be tested.

9-3. TEST PROCEDURE. Detailed step-by-step instructions, in flow chart form, are given for each test. The procedure calls out the type of test and the condition of the truck system for each part of testing. The step-by-step test will lead you to the bad component or to a fault symptom within a related system. Reference is made to the fault symptom index, chapter 6, if the test shows a fault in another system.
ENGINE CYLINDER COMPRESSION TEST

1. Start engine and warm up to operating temperature
 - Refer to TM 9-2320-209-10
 - Turn off engine
 - Refer to TM 9-2320-209-10

2. Take out all 6 fuel injector nozzle and holder assemblies
 - Refer to Vol 2, chapter 4, para 4-3

3. Put compression gage onto number one fuel injector opening in cylinder head
 - Using new fuel injector nozzle to head gasket, put on adapter
 - Put compression gage onto adapter

4. Crank engine for 5 seconds
 - Refer to TM 9-2320-209-10
 - Note: Keep fuel shutoff in off position
 - Read compression from gage and write down reading

GO

Figure 9-1 (Sheet 1 of 2)
Figure 9-1 (Sheet 2 of 2)

5

- Repeat steps 3 and 4 for all 6 cylinders

NOTE

The compression reading on each cylinder should be at least 525 psi. The cylinder with the highest reading should not be more than 75 psi higher than the cylinder with the lowest reading. If a cylinder is under 525 psi, or more than 75 psi less than the highest cylinder, go to step 6

6

- Take off compression gage
 - Take off gage and adapter
- Squirt several drops of engine oil into cylinder with low compression
- Crank engine for 5 seconds
 - Keep fuel shutoff in off position
- Do steps 3 and 4 for cylinder with low compression

NOTE

If compression reading is higher after doing step 6 than it was after the first test, it means rings are bad. If compression reading did not change, valves are bad
CHAPTER 10
FUEL SYSTEM TROUBLESHOOTING

10-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the fuel system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

10-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
Symptom

1- ENGINE RUNS ROUGH AND LACKS POWER

1
- Park truck
 - Refer to TM 9-2320-209-10

WARNING

Diesel fuel is very flammable. Care must be used when choosing a place to work on fuel system. Keep truck about 50 feet away from an area where open flame, sparks, or smoking can cause a fire. Keep a fire extinguisher close by.

2
- Check fuel injector nozzles
 - Refer to test equipment procedures index for fuel injector nozzle test

Are fuel injector nozzles OK?

GO

Figure 10-1 (Sheet 1 of 2)
Figure 10-1 (Sheet 2 of 2)
Symptom 2

ENGINE CRANKS BUT DOES NOT START

WARNING

Diesel fuel is very flammable. Care must be used when choosing a place to work on fuel system. Keep truck about 50 feet away from an area where open flame, sparks, or smoking may cause a fire. Keep a fire extinguisher close by.

NOTE

The following procedure will need the use of two soldiers. The lead soldier will be called soldier A. The helper will be called soldier B.

1. Check for fuel supply from fuel injection pump

SOLDIER A: Loosen one fuel injector nozzle fitting but do not take it off

SOLDIER B: Crank engine for 5 seconds. Refer to TM 9-2320-209-10

SOLDIER A: See if fuel comes out of fuel injector nozzle fitting

Does fuel come out of fitting?

GO
- Take out all six injector nozzles
 - Refer to Vol 2, chapter 4, para 4-3
- Inspect six injector nozzles
 - Refer to TM 9-2815-210-34

Are injector nozzles OK?

- Replace bad injector nozzles
 - Refer to Vol 2, chapter 4, para 4-3

- Put back all injector nozzles except the number 6 injector nozzle
 - Refer to Vol 2, chapter 4, para 4-3

 Note: One injector nozzle will be needed for the next step
GO

WARNING
Fuel coming out of an injector nozzle under pressure can go through the skin. This can cause blood poisoning. Keep hands away from injector nozzle when doing the next step.

6

- Put number 6 fuel injector nozzle onto fuel supply tube

SOLDIER A: Connect injector nozzle to fuel supply tube. See figure 11-1

SOLDIER B: Crank engine for 5 seconds

SOLDIER A: See if correct fuel spray pattern comes from injector nozzle. Refer to figure 11-1

Is fuel spray pattern OK?

7

NO

- Replace fuel injection pump
 - Refer to TM 9-2815-210-34

YES

8

- Adjust fuel injection pump timing
 - Refer to TM 9-2815-210-34

Figure 10-2 (Sheet 3 of 3)
Figure 10-3 (Sheet 1 of 3)
3. Retighten fuel injector nozzles

NOTE

The next step is done only on the LDT - 465 - IC turbocharged engine. For engines without turbocharger, go to step 6

4. Check turbocharger for sticking shaft and bent or broken impeller blades
 - Take off turbocharger air cleaner to impeller air tube. Refer to Vol 2, chapter 2, para 2-21
 - Turn turbocharger impeller by hand several times
 - Feel for sticking impeller shaft

Note: Impeller should turn freely with no rubbing or sticking
- See if impeller blades are bent or broken

Is turbocharger OK?

5. Replace turbocharger
 - Refer to Vol 2, chapter 2, para 2-21
Figure 10-3 (Sheet 3 of 3)
CHAPTER 11

FUEL SYSTEM SUPPORT DIAGRAMS

11-1. GENERAL This chapter gives the diagrams you need when doing trouble-shooting procedures in chapter 10. Figure 3-1 is a complete listing of all support diagrams used in this manual.
Figure 11-1. Fuel System Support Diagram
CHAPTER 12
FUEL SYSTEM TEST PROCEDURES

12-1. GENERAL. This chapter gives test procedures for the tests given in chapter 10, for the fuel system.

12-2. TEST SET-UP. Instructions for setup of test equipment and parts to be tested are given before the test procedures. Illustrations are used, when needed, to show you how to hook up the test equipment to the part to be tested.

12-3. TEST PROCEDURE. Detailed step-by-step instructions, in flow chart form, are given for each test. The procedure calls out the type of test and the condition of the truck system for each part of testing. The step-by-step test will lead you to the bad component or to a fault symptom within a related system. Reference is made to the fault symptom index, chapter 6, if the test shows a fault in another system.
FUEL SYSTEM TROUBLESHOOTING TESTS

FUEL INJECTOR NOZZLE TEST

1. Start and warm up engine
 - Refer to TM 9-2320-209-10

WARNING

Diesel fuel is very flammable. Care must be used when choosing a place to work on fuel system. Keep truck about 50 feet away from an area where open flame, sparks, or smoking can cause a fire. Keep a fire extinguisher close by.

NOTE

Put rag under line fittings before loosening to catch any fuel which drips out

2. Loosen fuel injector nozzle fitting of one fuel injector nozzle and see if engine runs rougher
 - Note: If engine runs rougher the injector nozzle is OK
 - Tighten fuel injector nozzle fitting
 - Note: Do procedure for all six fuel injector nozzle fittings

3. Stop engine
 - Refer to TM 9-2320-209-10

Figure 12-1
CHAPTER 13
ELECTRICAL SYSTEM TROUBLESHOOTING

13-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the electrical system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

13-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
ELECTRICAL SYSTEM TROUBLESHOOTING

Symptom
1. POWER PLANT HEATER OVERHEATS AND CONTINUES BURNING

NOTE
When measuring voltage +24 volts DC
means a range of +23 to +26 volts DC

1. Park truck
 - Refer to TM 9-2320-209-10

2. Check overheat temperature control for continuity
 - Take out overheat switch. Refer to Vol 2, chapter 21, para 21-6
 - Set multimeter to check continuity
 - Put multimeter lead on contact of overheat temperature control and + lead on other end of overheat temperature control
 - Read multimeter. Multimeter should measure zero ohms

Does multimeter measure zero ohms?

GO

Figure 13-1 (Sheet 1 of 2)
Figure 13-1 (Sheet 2 of 2)
Symptom

POWER PLANT HEATER DOES NOT GIVE OFF ENOUGH HEAT

NOTE
When measuring voltage +24 volts DC means a range of +23 to +26 volts DC

1

- Park truck
- Refer to TM 9-2320-209-10

2

- Check combustion blower for continuity
 - Disconnect combustion blower lead. Refer to Vol 2, chapter 21, para 21-6
 - Set multimeter to measure continuity
 - Put multimeter - lead on blower motor
 - Put multimeter + lead on blower motor lead
 - Read multimeter. Multimeter should measure zero ohms

Does multimeter measure zero ohms?

GO

Figure 13-2 (Sheet 1 of 3)
Figure 13-2 (Sheet 2 of 3)

- Replace heater blower motor
 - Refer to TM 9-2320-209-20

- Check overheat temperature control for continuity
 - Take out overheat temperature control. Refer to Vol 2, chapter 21, para 21-6
 - Put multimeter - lead on contact of overheat temperature control and + lead on other end of overheat temperature control
 - Read multimeter. Multimeter should measure zero ohms

Does multimeter measure zero ohms?

- Replace overheat temperature control
 - Refer to Vol 2, chapter 21, para 21-6
Check for +24 volts DC through fuel control valve
- Start heater. Refer to TM 9-2320-209-10
- Set multimeter to measure +24 volts DC
- Put multimeter - lead on fuel control valve lead at terminal strip
- Put multimeter + lead on fuel control valve at overheat switch
- Read multimeter. Multimeter should measure +24 volts DC

Does multimeter measure +24 volts DC?

Replace fuel control valve
- Refer to Vol 2, chapter 21, para 21-6

Replace blower switch
- Refer to Vol 2, chapter 21, para 21-17
Symptom 3

POWER PLANT HEATER DOES NOT START

NOTE

When measuring voltage +24 volts DC means a range of +23 to +26 volts DC.

1

- Park truck
 - Refer to TM 9-2320-209-10

2

- Check for +24 volts DC through control box circuit breaker
 - Take cover off control box. Refer to Vol 2, chapter 21, para 21-17
 - Set multimeter to measure +24 volts DC
 - Put multimeter lead on one contact of circuit breaker
 - Put multimeter lead on other contact of circuit breaker
 - Read multimeter. Multimeter should measure +24 volts DC

Does multimeter measure +24 volts DC?

GO

Figure 13-3 (Sheet 1 of 6)
3. Replace circuit breaker
 - Refer to Vol 2, chapter 21, para 21-19

4. Check for +24 volts DC to control switch
 - Put multimeter + lead on lead from circuit breaker at heater control switch
 - Put multimeter - lead on a good ground
 - Read multimeter. Multimeter should measure +24 volts DC

 Does multimeter measure +24 volts DC?

5. Repair or replace lead from circuit breaker to heater control switch
 - Refer to Vol 2, chapter 21, para 21-17

Figure 13-3 (Sheet 2 of 6)
6. Check for +24 volts through heater control switch when set to start
 - Put multimeter – lead on contact 14 of heater control switch and + lead on contact 21
 - Place heater control switch to start and hold it there
 - Read multimeter while switch is held at start
 - Multimeter should measure +24 volts DC

 Does multimeter measure +24 volts DC?

7. Replace heater control switch
 - Refer to Vol 2, chapter 21, para 21-17

8. Check for +24 volts through heater control switch when set to run
 - Set heater control switch to run
 - Put multimeter – lead on contact 16 of heater control switch and + lead on contact 19
 - Read multimeter. Multimeter should measure +24 volts DC

 Does multimeter measure +24 volts DC?

Figure 13-3 (Sheet 3 of 6)
Replace heater control switch
- Refer to Vol 2, chapter 21, para 21-17

Check harness from heater control box to heater for continuity
- Set heater control to off
- Unscrew and take off harness plug from control box receptacle
- Unscrew and take off harness plug from heater
- Set multimeter to check continuity

Place multimeter - lead on control box harness plug contact A
Place multimeter + lead on heater harness plug contact A
Read multimeter, multimeter should indicate continuity
Do this test for contacts B, C, D, and E of both harness plugs
Read multimeter after each contact is tested. Multimeter should measure zero ohms for each test

Does multimeter measure zero ohms for each contact tested?

Figure 13-3 (Sheet 4 of 6)
Figure 13-3 (Sheet 5 of 6)
14

- Replace heater voltage regulator
- Put fuel valve assembly leads back on overheating switch and terminal strip
- Replace heater voltage regulator. Refer to instructions that come with fuel burning heater kit.
Symptom

4. FUEL BURNING HEATER OVERHEATS AND CONTINUES BURNING

NOTE

When measuring voltage ±24 volts DC means a range of ±23 to ±26 volts DC

1. Park truck
 - Refer to TM 9-2320-209-10

2. Check overheat switch for continuity
 - Take out overheat switch. Refer to Vol 2, chapter 21, para 21-9
 - Set multimeter to check continuity
 - Put multimeter \(-\) lead on contact of overheat switch
 - Put multimeter \(+\) lead on other end of overheat switch
 - Read multimeter, multimeter should measure zero ohms

Does multimeter measure zero ohms?

3. Replace overheat switch
 - Replace overheat switch. Refer to Vol 2, chapter 21, para 21-9

Figure 13-4 (Sheet 1 of 2)
- Replace fuel control valve
- Put back overheat switch
- Replace fuel valve assembly.

Refer to Vol 2, chapter 21, para 21-9
Symptom

5 FUEL BURNING HEATER DOES NOT GIVE OFF ENOUGH HEAT

NOTE
When measuring voltage +24 volts DC means a range of +23 to +26 volts DC

1. Park truck
 - Refer to TM 9-2320-209-10

2. Check resistance of heater resistor
 - Pull lead off both contacts of heater resistor
 - Set multimeter to measure resistance
 - Put multimeter - lead on one contact of resistor and + lead on other contact of heater resistor
 - Read multimeter, multimeter should measure resistance
 - Put multimeter - lead on contact where multimeter + lead was and + lead where - lead was for last test. Read multimeter. Multimeter should measure resistance

Did multimeter measure resistance for both tests?

3. Replace heater resistor
 - Refer to Vol 2, chapter 21, para 21-9

Figure 13-5 (Sheet 1 of 4)
4. Check blower assembly motor for continuity
 - Disconnect blower assembly motor lead. Refer to Vol 2, chapter 21, para 21-9
 - Set multimeter to check continuity
 - Put multimeter - lead on blower motor case
 - Put multimeter + lead on lead of blower motor
 - Read multimeter, multimeter should measure zero ohms

 Does multimeter measure zero ohms?

5. Replace blower assembly motor
 - Refer to Vol 2, chapter 21, para 21-9

Figure 13-5 (Sheet 2 of 4)
Check overheat switch for continuity
- Put heater back together. Refer to Vol 2, chapter 21, para 21-9
- Put multimeter - lead on contact of overheat switch and + lead on other end of overheat switch
- Read multimeter. Multimeter should measure zero ohms

Does multimeter measure zero ohms?

Replace overheat switch
- Refer to Vol 2, chapter 21, para 21-9
Check for +24 volts through fuel control valve
- Start heater. Refer to TM 9-2320-209-10
- Set multimeter to measure +24 volts DC
- Put multimeter - lead on fuel control valve lead at terminal strip
- Put multimeter + lead on fuel control valve lead at overheat switch
- Read multimeter. Multimeter should measure +24 volts DC

Does multimeter measure +24 volts?

- Replace fuel control valve
 - Refer to Vol 2, chapter 21, para 21-9

- Replace heater control switch
 - Refer to Vol 2, chapter 21, para 21-17

Figure 13-5 (Sheet 4 of 4)
Symptom 6

FUEL BURNING HEATER DOES NOT START

NOTE
When measuring voltage +24 volts DC means a range of +23 to +26 volts DC

1. Park truck
 - Refer to TM 9-2320-209-10

2. Check for +24 volts DC through control box circuit breaker
 - Take cover off control box. Refer to Vol 2, chapter 21, para 21-17
 - Set multimeter to measure +24 volts DC
 - Put multimeter - lead on one contact of circuit breaker
 - Put multimeter + lead on other contact of circuit breaker
 - Read multimeter. Multimeter should measure +24 volts DC

Does multimeter measure +24 volts DC?

3. Replace circuit breaker
 - Refer to Vol 2, chapter 21, para 21-17

GO

Figure 13-6 (Sheet 1 of 5)
4. Check for +24 volts DC to control switch
 - Put multimeter lead on a good ground
 - Put multimeter + lead on lead from circuit breaker at heater control switch
 - Read multimeter; multimeter should measure +24 volts DC

Does multimeter measure +24 volts DC?

5. Repair or replace lead from circuit breaker to heater control switch
 - Refer to Vol 2, chapter 21, para 21-17

6. Check for +24 volts DC through heater control switch when set to start
 - Put multimeter lead on contact 14 of heater control switch and + lead on contact 21
 - Place heater control switch to ON and hold it there
 - Read multimeter while switch is held at start
 - Multimeter should measure +24 volts DC

Does multimeter measure +24 volts DC?

Figure 13-6 (Sheet 2 of 5)
Figure 13-5 (Sheet 3 of 5)
- Place multimeter - lead on control box harness plug contact A
- Read multimeter. Multimeter should measure zero ohms
- Do this test for contacts B, C, D, and E of both harness plugs
- Read multimeter after each contact is tested. Multimeter should measure zero ohms for each contact tested

Does multimeter measure zero ohms for each contact tested?

- Repair or replace harness from heater control box to heater
 - Refer to Vol 2, chapter 21, para 21-17
Check fuel control valve continuity

- Take fuel control valve leads off overheat switch and terminal strip. Refer to Vol 2, chapter 21, para 21-9
- Put multimeter - lead on one fuel control valve lead control and + lead on other lead contact
- Read multimeter, multimeter should measure zero ohms

Does multimeter measure zero ohms?

Replace fuel control valve

- Refer to Vol 2, chapter 21, para 21-9

Replace heater voltage regulator

- Put fuel control valve leads back on overheat switch and terminal switch
- Replace heater voltage regulator. Refer to instructions that come with fuel burning heater kit
Symptom
7 NO VAN LIGHTS OR EQUIPMENT WORK

--- WARNING ---
Only properly trained personnel should perform tests on van body 115 volt AC systems.
The voltage present in 115 volt AC system can cause severe or fatal electric shock.

--- 1 ---
Park truck
- Refer to TM 9-2320-209-10

--- 2 ---
Check for 115 volt AC through external power cable
- Pull external power cable plug from power entrance receptacle
- Set multimeter to measure 115 volts AC
- Put multimeter on large contact of power cable plug and keep it there
- Put multimeter on each of the small contacts of power cable plug
- Read multimeter for each contact tested. Multimeter should measure 115 volts AC

Does multimeter measure less than 115 volts AC for any contact tested?

GO

Figure 13-7 (Sheet 1 of 2)
Figure 13-7 (Sheet 2 of 2)

1. **GO**
 - If yes, go to step 3.
 - If no, disconnect external power cable.
 - Refer to TM 9-2320-209-10
 - Check external power cable for continuity or shorts.
 - Refer to TM 9-2320-209-20

2. **Is external power cable free of shorts?**
 - If yes, put on new external power cable.
 - Refer to TM 9-2320-209-10
 - If no, repair or replace external generating power source.
 - Refer to power source TM

3. **Replace van main wiring harness**
 - Refer to Vol 2, chapter 7, para 7-11

4. **Tell post engineers**

13-25/(13-26 blank)
CHAPTER 14

ELECTRICAL SYSTEM TEST PROCEDURES

14-1. TEST PROCEDURES. Test procedures for the electrical system consist of procedures for using multimeters. Refer to TM 9-2320-209-20-2 for these procedures.
15-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the transmission system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

15-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
TRANSMISSION SYSTEM TROUBLESHOOTING

Symptom
1. TRANSMISSION IS HARD TO SHIFT, OR POPS OUT OF GEAR

 1. Park truck
 - Refer to TM 9-2320-209-10

 2. Repair or replace shifter shaft cover
 - Refer to Vol 2, chapter 8, para 8-3
 - Try shifting transmission
 - Refer to TM 9-2320-209-10

 Is transmission still hard to shift, or does transmission pop out of gear?

 3. NO
 - End troubleshooting for transmission is hard to shift or pops out of gear

 4. YES
 - Repair transmission
 - Refer to TM 9-2520-246-34

Figure 15-1
CHAPTER 16

EARTH BORING MACHINE SYSTEM TROUBLESHOOTING

16-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the earth boring machine system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

16-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
Symptom

1. EARTH BORING MACHINE PROPELLER SHAFT DOES NOT TURN

1. Park truck
 - Refer to TM 9-2320-209-10

NOTE

The following procedure will need the use of two soldiers. The lead soldier will be called Soldier A and the helper will be called Soldier B

2. Check power divider

SOLDIER B:
- Start engine. Refer to TM 9-2320-209-10
- Engage earth boring machine. Refer to TM 9-2320-209-10

SOLDIER A:
- See if earth boring machine propeller shaft turns

SOLDIER B:
- Shut down earth boring machine. Refer to TM 9-2320-209-10
- Turn off engine. Refer to TM 9-2320-209-10

Does propeller shaft turn?

GO

Figure 16-1 (Sheet 1 of 2)
Figure 16-1 (Sheet 2 of 2)
1. Park truck
 - Refer to TM 9-2320-209-10

2. Check vertical drive chain sprockets
 - Take off chain cover. Refer to TM 9-2320-209-20
 - Look for broken drive chain sprocket

Are vertical drive chain sprockets OK?

3. Replace broken vertical drive chain sprocket
 - Refer to Vol 2, chapter 17, para 17-50 and 17-53

Figure 16-2 (Sheet 1 of 2)
Figure 16-2 (Sheet 2 of 2)

4. **Repair or replace worm drive clutch**
 - Refer to Vol 2, chapter 17, para 17-52

5. **Start engine**
 - Refer to TM 9-2320-209-10

6. **Move boring machine up and down**
 - Refer to TM 9-2320-209-10

Does boring machine move up and down?

5. **Shut down boring machine and turn off engine**
 - Refer to TM 9-2320-209-10
 - Repair or replace vertical leveling worm drive gear
 - Refer to Vol 2, chapter 17, para 17-50

6. **Yes**
 - Shut down boring machine and turn off engine
 - Refer to TM 9-2320-209-10
Figure 16-3 (Sheet 1 of 2)
4. Repair or replace worm drive clutch
 - Refer to Vol 2, chapter 17, para 17-52
 - Start engine
 - Refer to TM 9-2320-209-10
 - Move boring machine left and right
 - Refer to TM 9-2320-209-10

Does boring machine move left and right?

5. Shut down boring machine and turn off engine
 - Refer to TM 9-2320-209-10
 - Repair or replace worm drive gear
 - Refer to Vol 2, chapter 17, para 17-49

6. Shut down boring machine and turn off engine
 - Refer to TM 9-2320-209-10
CHAPTER 17
FRONT WINCH SYSTEM TROUBLESHOOTING

17-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the front winch system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

17-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
1. **Symptom**
 - WINCH DOES NOT PULL LOAD

2. **Check power takeoff**
 - Take off propeller shaft from front winch to power takeoff
 - Refer to TM 9-2320-209-20
 - Start engine. Refer to TM 9-2320-209-10
 - Start winch. Refer to TM 9-2320-209-10
 - See if power takeoff flange is turning

3. **Replace power takeoff**
 - Refer to Vol 2, chapter 18, para 18-13

Figure 17-1 (Sheet 1 of 2)
4. Put back propeller shaft
 - Stop winch. Refer to TM 9-2320-209-10
 - Turn off engine. Refer to TM 9-2320-209-10
 - Put propeller shaft back on front winch and power takeoff. Refer to TM 9-2320-209-20

5. Check winch gear case
 - Remove winch gear case and inspect for bad parts in gear case. Refer to Vol 2, chapter 18, para 18-3

 Is winch gear case OK?

6. NO
 - Replace bad parts in winch gear case
 - Refer to Vol 2, chapter 18, para 18-3

7. YES
 - Repair or replace parts in winch drum assembly
 - Refer to Vol 2, chapter 18, para 18-3

Figure 17-1 (Sheet 2 of 2)

17-3/(17-4 blank)
CHAPTER 18

DUMP SYSTEM (M342A2) TROUBLESHOOTING

18-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the dump system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

18-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
Symptom 1

DUMP BODY DOES NOT RISE

1. Park truck
 - Refer to TM 9-2320-209-10

2. Check crosshead roller arm assemblies
 - Look for cracked or broken parts in crosshead roller arm assemblies

Are crosshead roller arm assemblies OK?

3. YES
 - Repair or replace crosshead roller arm assemblies
 - Refer to Vol 2, chapter 18, para 18-7

 NO

GO

Figure 18-1 (Sheet 1 of 2)
GO

4

- Replace control valve spool trunnion
 - Refer to Vol 2, chapter 18, para 18-10
- Raise dump body
 - Refer to TM 9-2320-209-10

Does dump body still not rise?

5

NO

- Lower dump body
 - Refer to TM 9-2320-209-10

6

YFS

- Shut down dump body
 - Refer to TM 9-2320-209-10
- Repair hydraulic pump
 - Refer to Vol 2, chapter 18, para 18-9
- Repair hydraulic cylinder assembly
 - Refer to Vol 2, chapter 18, para 18-8
- Replace hydraulic hoist control valve
 - Refer to Vol 2, chapter 18, para 18-10

Figure 18-1 (Sheet 2 of 2)
Figure 18-2 (Sheet 2 of 2)

18-5/(18-6 blank)
CHAPTER 19
REAR WINCH (M764) SYSTEM TROUBLESHOOTING

19-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the M764 rear winch system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

19-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
REAR WINCH TROUBLESHOOTING FOR M764

1. Park truck
 - Refer to TM 9-2320-209-10
 - Turn off winch. Refer to TM 9-2320-209-10
 - Turn off engine. Refer to TM 9-2320-209-10

2. Check power takeoff
 - Take out power divider driveshaft. Refer to TM 9-2320-209-20
 - Start engine. Refer to TM 9-2320-209-10
 - Turn on power takeoff. Refer to TM 9-2320-209-10

 Does flange turn?

3. Turn off power takeoff and turn off engine
 - Refer to TM 9-2320-209-10
 - Replace broken power takeoff
 - Refer to Vol 2, chapter 18, para 18-16
 - Put back power divider driveshaft
 - Refer to TM 9-2320-209-20

Figure 19-1 (Sheet 1 of 2)
4. Turn off power takeoff and turn off engine
 - Refer to TM 9-2320-209-10
 - Put back power divider drive shaft
 - Refer to TM 9-2320-209-20

5. Take off winch drive chain
 - Refer to Vol 2, chapter 18, para 18-6
 - Start engine
 - Turn on power divider
 - Refer to TM 9-2320-209-10

Does sprocket turn?

6. Turn off power divider and turn off engine
 - Replace broken power divider
 - Refer to Vol 2, chapter 18, para 18-12

7. Turn off power divider and turn off engine
 - Refer to TM 9-2320-209-10
 - Repair or replace winch
 - Refer to Vol 2, chapter 18, para 18-5

Figure 19-1 (Sheet 2 of 2)
Symptom

1. Park truck
 - Refer to TM 9-2320-209-10
 - Turn off winch. Refer to TM 9-2320-209-10
 - Turn off engine. Refer to TM 9-2320-209-10

2. Adjust automatic brake
 - Refer to Vol 2, chapter 18, para 18-5
 - Test winch
 - Turn on engine. Refer to TM 9-2320-209-10
 - Turn on winch. Refer to TM 9-2320-209-10

 Does winch still fail to hold load?

3. Turn off winch and turn off engine.
 - Refer to TM 9-2320-209-10

Figure 19-2 (Sheet 1 of 2)
Figure 19-2 (Sheet 2 of 2)

GO

4
- Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10

5
- Replace automatic brake linings
 - Refer to Vol 2, chapter 18, para 18-5
- Test winch
 - Turn on engine and turn on winch

Does winch still fail to hold load?

6
- End troubleshooting
 - Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10

NO

7
- Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10
- Repair or replace winch
 - Refer to Vol 2, chapter 18, para 18-5

YES
Symptom

WINCH DRUM SPINS TOO FAST WHEN UNWINDING CABLE

1. Park truck
 - Refer to TM 9-2320-209-10
 - Turn off winch. Refer to TM 9-2320-209-10
 - Turn off engine. Refer to TM 9-2320-209-10

2. Adjust automatic brake
 - Refer to Vol 2, chapter 18, para 18-5
 - Test winch
 - Turn on engine. Refer to TM 9-2320-209-10
 - Turn on winch. Refer to TM 9-2320-209-10

 Does winch still spin too fast when unwinding cable?

3. Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10

GO

Figure 19-3 (Sheet 1 of 2)
Figure 19-3 (Sheet 2 of 2)

4. Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10

5. Replace automatic brake linings
 - Refer to Vol 2, chapter 18, para 18-5
 - Test winch
 - Turn on engine and turn on winch. Refer to TM 9-2320-209-10

 Does winch still spin too fast when unwinding cable?

6. NO
 - Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10

7. YES
 - Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10
 - Repair or replace winch
 - Refer to Vol 2, chapter 18, para 18-5
CHAPTER 20

REAR WINCH (M756A2) SYSTEM TROUBLESHOOTING

20-1. EQUIPMENT ITEMS COVERED. This chapter gives equipment troubleshooting procedures for the M756A2 rear winch system, for which there are authorized corrective maintenance tasks at the direct support and general support maintenance level.

20-2. EQUIPMENT ITEMS NOT COVERED. All equipment items for which corrective maintenance is authorized at the direct support and general support maintenance level are covered in this chapter.
Symptom

1. WINCH DOES NOT PULL LOAD

 1. Park truck
 - Refer to TM 9-2320-209-10
 - Turn off winch. Refer to TM 9-2320-209-10
 - Turn off engine. Refer to TM 9-2320-209-10

 2. Test power takeoff
 - Take off winch drive chain. Refer to TM 9-2320-209-20
 - Turn on engine. Refer to TM 9-2320-209-10
 - Turn on winch. Refer to TM 9-2320-209-10

Does power takeoff drive chain sprocket turn?

3. NO
 - Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10
 - Put back winch drive chain
 - Refer to Vol 2, chapter 18, para 18-4
 - Replace power takeoff
 - Refer to Vol 2, chapter 18, para 18-16

4. YES
 - Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10
 - Repair or replace winch
 - Refer to Vol 2, chapter 18, para 18-4

Figure 20-1
Symptom
2
WINCH DOES NOT HOLD LOAD

1
- Park truck
 - Refer to TM 9-2320-209-10
 - Turn off winch. Refer to TM 9-2320-209-10
 - Turn off engine. Refer to TM 9-2320-209-10

2
- Adjust automatic brake
 - Refer to Vol 2, chapter 18, para 18-4
- Test winch
 - Turn on engine. Refer to TM 9-2320-209-10
 - Turn on winch. Refer to TM 9-2320-209-10

Does winch still fail to hold load?

20-3
5. Replace automatic brake linings
 - Refer to Vol 2, chapter 18, para 18-4
 - Test winch
 - Turn on engine and turn on winch.
 Refer to TM 9-2320-209-10

Does winch still fail to hold load?

6. Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10

7. Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10
 - Repair or replace winch
 - Refer to Vol 2, chapter 18, para 18-4
Symptom

WINCH DRUM SPINS TOO FAST WHEN UNWINDING CABLE

1. Park truck
 - Refer to TM 9-2320-209-10
 - Turn off winch. Refer to TM 9-2320-209-10
 - Turn off engine. Refer to TM 9-2320-209-10

2. Adjust automatic brake
 - Refer to TM 9-2320-209-20
 - Test winch
 - Turn on engine. Refer to TM 9-2320-209-10
 - Turn on winch. Refer to TM 9-2320-209-10

 Does winch still spin too fast when unwinding cable?

3. Turn off winch and turn off engine
 - Refer to TM 9-2320-209-10

Figure 20-3 (Sheet 1 of 2)
Figure 20-3 (Sheet 2 of 2)
By Order of the Secretaries of the Army and the Air Force:

E.C. MEYER
General, United States Army
Chief of Staff

Official:

J.C. PENNINGTON
Major General, United States Army
The Adjutant General

LEW ALLEN, J R., General, USAF
Chief of Staff

Official:

VAN L. CRAWFORD, J R., Colonel, USAF
Director of Administration

Distribution:

To be distributed in accordance with DA FORM 12-38, Direct Support and General Support Maintenance requirements for 2-1/2 Ton Truck Cargo, and 2-1/2 Ton Truck Van, etc.
SOMETHING WRONG WITH THIS PUBLICATION?

THEN...JOT DOWN THE DOPE ABOUT IT ON THIS FORM, CAREFULLY TEAR IT OUT, FOLD IT AND DROP IT IN THE MAIL!

FROM
PRINT YOUR UNIT'S COMPLETE ADDRESS
CDR, 1st Bn, 65th ADA
ATTN: SPD Jane Idone
Key West, FL 33040

DATE SENT
Date sent in

PUBLICATION NUMBER
TM 9-2320-209-34-1

PUBLICATION DATE
20 May 1981

PUBLICATION TITLE
DIR. & GEN. SUPPORT TROUBLESHOOTING MANUAL

BE EXACT PIN-POINT WHERE IT IS

IN THIS SPACE TELL WHAT IS WRONG AND WHAT SHOULD BE DONE ABOUT IT:

PAGE NO PARA. NO FIGURE NO TABLE NO

6-3

6-3 VAN BODY subsystem, symptom 7, detailed procedure refers to figure 13. Should refer to figure 13-7.

13-4

13-2 (Sheet 1

19-2

19-1 (Sheet 1

CHANGE ILLUSTRATION CALLOUTS.
REASON: CALLOUTS FOR FLANGE AND POWER DIVIDER DRIVESHAFT ARE REVERSED.
Commander
U.S. Army Tank-Automotive Command
ATTN: DRSTA-MB
Warren, MI 48090
RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS

SOMETHING WRONG WITH THIS PUBLICATION?

THEN... JOT DOWN THE DOPE ABOUT IT ON THIS FORM, CAREFULLY TEAR IT OUT, FOLD IT AND DROP IT IN THE MAIL!

FROM (PRINT YOUR UNIT'S COMPLETE ADDRESS)

DATE SENT

PUBLICATION NUMBER
TM 9-2320-209-34-1

PUBLICATION DATE
20 May 1981

PUBLICATION TITLE
DIR. & GEN. SUPPORT
TROUBLESHOOTING MANUAL

BE EXACT. PIN-POINT WHERE IT IS

IN THIS SPACE TELL WHAT IS WRONG AND WHAT SHOULD BE DONE ABOUT IT:

PAGE NO	PARA. NO	FIGURE NO	TABLE NO

PRINTED NAME, GRADE OR TITLE AND TELEPHONE NUMBER

SIGN HERE

DA FORM 2028-2
P.S.: IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS

PREVIOUS EDITIONS ARE OBSOLETE.
Commander
U.S. Army Tank-Automotive Command
ATTN: DRSTA-MB
Warren, MI 48090
RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS

SOMETHING WRONG WITH THIS PUBLICATION?

FROM (PRINT YOUR UNIT'S COMPLETE ADDRESS)

DATE SENT

PUBLICATION NUMBER
TM 9-2320-209-34-1

PUBLICATION DATE
20 May 1981

PUBLICATION TITLE
DIR. & GEN. SUPPORT TROUBLESHOOTING MANUAL

BE EXACT PIN-POINT WHERE IT IS

<table>
<thead>
<tr>
<th>PAGE NO</th>
<th>PARAGRAPH NO</th>
<th>FIGURE NO</th>
<th>TABLE NO</th>
</tr>
</thead>
</table>

IN THIS SPACE TELL WHAT IS WRONG AND WHAT SHOULD BE DONE ABOUT IT:

PRINTED NAME GRACE OR TITLE AND TELEPHONE NUMBER

SIGN HERE

DA FORM 1 JUL 79 2028-2

PREVIOUS EDITIONS ARE OBSOLETE.

P.S. IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS.
Commander
U.S. Army Tank-Automotive Command
ATTN: DRSTA-MB
Warren, MI 48090
RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS

SOMETHING WRONG WITH THIS PUBLICATION?

THEN... JOT DOWN THE DOPE ABOUT IT ON THIS FORM, CAREFULLY TEAR IT OUT, FOLD IT AND DROP IT IN THE MAIL!

FROM [PRINT YOUR UNIT'S COMPLETE ADDRESS]

DATE SENT

PUBLICATION NUMBER
TM 9-2320-209-34-1

PUBLICATION DATE
20 May 1981

PUBLICATION TITLE
DIR. & GEN. SUPPORT TROUBLESHOOTING MANUAL

BE EXACT PIN-POINT WHERE IT IS IN THIS SPACE TELL WHAT IS WRONG AND WHAT SHOULD BE DONE ABOUT IT:

<table>
<thead>
<tr>
<th>PAGE NO</th>
<th>PARAGRAPH NO</th>
<th>FIGURE NO</th>
<th>TABLE NO</th>
</tr>
</thead>
</table>

PRINTED NAME, GRADE OR TITLE AND TELEPHONE NUMBER

SIGN HERE

P.S.--IF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR RECOMMENDATION MAKE A CARBON COPY OF THIS AND GIVE IT TO YOUR HEADQUARTERS
Commander
U.S. Army Tank-Automotive Command
ATTN: DRSTA-MB
Warren, MI 48090
THE METRIC SYSTEM AND EQUIVALENTS

LINEAR MEASURE
- 1 Centimeter = 10 Millimeters = 0.01 Meters = 0.3937 Inches
- 1 Meter = 100 Centimeters = 1,000 Millimeters = 39.37 Inches
- 1 Kilo Meter = 1,000 Meters = 0.621 Miles

WEIGHTS
- 1 Gram = 0.001 Kilograms = 1,000 Milligrams = 0.035 Ounces
- 1 Kilogram = 1,000 Grams = 2.2 Lb
- 1 Metric Ton = 1,000 Kilograms = 1 Megagram = 1.1 Short Tons

LIQUID MEASURE
- 1 Milliliter = 0.001 Liters = 0.0338 Fluid Ounces
- 1 Liter = 1,000 Milliliters = 33.82 Fluid Ounces

SQUARE MEASURE
- 1 Sq Centimeter = 100 Sq Millimeters = 0.155 Sq Inches
- 1 Sq Meter = 10,000 Sq Centimeters = 10.76 Sq Feet
- 1 Sq Kilo Meter = 1,000,000 Sq Meters = 3.86 Sq Miles

CUBIC MEASURE
- 1 Cu Centimeter = 1,000 Cu Millimeters = 0.06 Cu Inches
- 1 Cu Meter = 1,000,000 Cu Centimeters = 35.31 Cu Feet

TEMPERATURE
- \(5/9 \times (F - 32) = ^\circ C \)
- 29.2° Fahrenheit is equivalent to 100° Celsius
- 90° Fahrenheit is equivalent to 32.2° Celsius
- 32° Fahrenheit is equivalent to 0° Celsius
- \(9/5 \times ^\circ C + 32 = ^\circ F \)

APPROXIMATE CONVERSION FACTORS

<table>
<thead>
<tr>
<th>TO CHANGE</th>
<th>TO</th>
<th>MULTIPLY BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches</td>
<td>Centimeters</td>
<td>2.540</td>
</tr>
<tr>
<td>Feet</td>
<td>Meters</td>
<td>0.305</td>
</tr>
<tr>
<td>Yards</td>
<td>Meters</td>
<td>0.914</td>
</tr>
<tr>
<td>Miles</td>
<td>Kilometers</td>
<td>1.609</td>
</tr>
<tr>
<td>Square Inches</td>
<td>Square Centimeters</td>
<td>6.451</td>
</tr>
<tr>
<td>Square Feet</td>
<td>Square Meters</td>
<td>0.093</td>
</tr>
<tr>
<td>Square Yards</td>
<td>Square Meters</td>
<td>0.836</td>
</tr>
<tr>
<td>Square Miles</td>
<td>Square Kilometers</td>
<td>2.590</td>
</tr>
<tr>
<td>Acres</td>
<td>Square Hectometers</td>
<td>0.405</td>
</tr>
<tr>
<td>Cubic Feet</td>
<td>Cubic Meters</td>
<td>0.028</td>
</tr>
<tr>
<td>Cubic Yards</td>
<td>Cubic Meters</td>
<td>0.765</td>
</tr>
<tr>
<td>Fluid Ounces</td>
<td>Milliliters</td>
<td>29.573</td>
</tr>
<tr>
<td>Pints</td>
<td>Liters</td>
<td>0.473</td>
</tr>
<tr>
<td>Quarts</td>
<td>Liters</td>
<td>0.946</td>
</tr>
<tr>
<td>Gallons</td>
<td>Liters</td>
<td>3.785</td>
</tr>
<tr>
<td>Ounces</td>
<td>Grams</td>
<td>28.349</td>
</tr>
<tr>
<td>Pounds</td>
<td>Kilograms</td>
<td>0.454</td>
</tr>
<tr>
<td>Short Tons</td>
<td>Metric Tons</td>
<td>0.907</td>
</tr>
<tr>
<td>Pound-Feet</td>
<td>Newton-Meters</td>
<td>1.356</td>
</tr>
<tr>
<td>Pounds Per Square Inch</td>
<td>Kilopascals</td>
<td>6.895</td>
</tr>
<tr>
<td>Miles Per Gallon</td>
<td>Kilometers Per Liter</td>
<td>0.425</td>
</tr>
<tr>
<td>Miles Per Hour</td>
<td>Kilometers Per Hour</td>
<td>1.609</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TO CHANGE</th>
<th>TO</th>
<th>MULTIPLY BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centimeters</td>
<td>Inches</td>
<td>0.394</td>
</tr>
<tr>
<td>Meters</td>
<td>Feet</td>
<td>3.280</td>
</tr>
<tr>
<td>Meters</td>
<td>Yards</td>
<td>1.094</td>
</tr>
<tr>
<td>Kilometers</td>
<td>Miles</td>
<td>0.621</td>
</tr>
<tr>
<td>Square Centimeters</td>
<td>Square Inches</td>
<td>0.155</td>
</tr>
<tr>
<td>Square Meters</td>
<td>Square Feet</td>
<td>10.764</td>
</tr>
<tr>
<td>Square Meters</td>
<td>Square Yards</td>
<td>1.196</td>
</tr>
<tr>
<td>Square Kilometers</td>
<td>Square Miles</td>
<td>0.386</td>
</tr>
<tr>
<td>Square Hectometers</td>
<td>Acres</td>
<td>2.471</td>
</tr>
<tr>
<td>Cubic Meters</td>
<td>Cubic Feet</td>
<td>35.315</td>
</tr>
<tr>
<td>Cubic Yards</td>
<td>Cubic Meters</td>
<td>1.308</td>
</tr>
<tr>
<td>Millimeters</td>
<td>Fluid Ounces</td>
<td>0.034</td>
</tr>
<tr>
<td>Liters</td>
<td>Pints</td>
<td>2.113</td>
</tr>
<tr>
<td>Liters</td>
<td>Quarts</td>
<td>1.057</td>
</tr>
<tr>
<td>Liters</td>
<td>Gallons</td>
<td>0.264</td>
</tr>
<tr>
<td>Grams</td>
<td>Ounces</td>
<td>0.035</td>
</tr>
<tr>
<td>Kilograms</td>
<td>Pounds</td>
<td>2.050</td>
</tr>
<tr>
<td>Metric Tons</td>
<td>Short Tons</td>
<td>1.102</td>
</tr>
<tr>
<td>Newton-Meters</td>
<td>Pound-Feet</td>
<td>0.738</td>
</tr>
<tr>
<td>Kilopascals</td>
<td>Pounds Per Square Inch</td>
<td>0.145</td>
</tr>
<tr>
<td>Kilometers Per Liter</td>
<td>Miles Per Gallon</td>
<td>2.354</td>
</tr>
<tr>
<td>Kilometers Per Hour</td>
<td>Miles Per Hour</td>
<td>0.621</td>
</tr>
</tbody>
</table>